Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.156
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612597

RESUMO

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Assuntos
Analgésicos Opioides , Imidazóis , Naftalenos , Nitrocompostos , Sulfóxidos , Traumatismos do Sistema Nervoso , Humanos , Animais , Camundongos , Ratos , Maraviroc , Sistema Nervoso Central , Sistema Nervoso Periférico
2.
BMC Biol ; 22(1): 74, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561802

RESUMO

BACKGROUND: The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS: Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS: Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.


Assuntos
Urocordados , Animais , Urocordados/genética , Morfogênese/genética , Epiderme , Sistema Nervoso Periférico , Larva/genética , Celulose
4.
BMC Complement Med Ther ; 24(1): 117, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454382

RESUMO

A meditative 'technique' is conceived as a continuum of different affective states involving mind and body jointly. Meditative practices can involve cognitive effort (e.g., focused attention and open-minded techniques), as well as automatic and implicit practices (e.g., transcendental techniques). The NGALSO tantric self-healing meditation technique is a brief, comprehensive meditation technique relying on mind and body connection. In this study, we aimed to investigate the state and the trait neurophysiological correlates of NGALSO meditation practice. First, 19 EEG channels and a 3-lead ECG signal were recorded from 10 expert meditators (more than 7 years of daily meditation) and 10 healthy inexpert participants (controls) who underwent the same meditative procedure. The neuropsychological profiles of experts and controls were compared. Results showed that expert meditators had significantly higher power spectra on alpha, theta and beta, and a higher sympathetic tone with lower parasympathetic tone after meditation. Conversely, the control group had significantly less power spectra on alpha, theta and beta, and a higher parasympathetic tone with lower sympathetic tone after meditation. A machine learning approach also allowed us to classify experts vs. controls correctly by using only EEG Theta bands before or after meditation. ECG results allowed us to show a significantly higher effort by expert meditators vs. controls, thus suggesting that a higher effort is required for this meditation, in line with the principle 'no pain, no gain' in body and mind.


Assuntos
Meditação , Humanos , Sistema Nervoso Periférico
5.
Adv Drug Deliv Rev ; 208: 115275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442747

RESUMO

Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.


Assuntos
Sistemas de Liberação de Medicamentos , Terapia por Ultrassom , Humanos , Ultrassonografia , Sistema Nervoso Periférico , Microbolhas
6.
Handb Clin Neurol ; 199: 179-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307646

RESUMO

The International Neuromodulation Society defines therapeutic neuromodulation as the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body. Neuromodulation for the treatment of migraine is an evolving field offering further insight into the pathophysiology of migraine as well as advanced therapeutics. Central and peripheral neuronal targets have been explored in the efforts to reduce the frequency and severity of attacks. Invasive and noninvasive techniques have been developed, targeting either the central or peripheral nervous system. Noninvasive central neuromodulation techniques have the benefit of a low side effect profile in addition to higher level of evidence for use thanks to sham-controlled trials; however, these modalities are less clinically available for use. Noninvasive transcutaneous neuromodulation techniques that target the peripheral nervous system have provided devices that are available over the counter or by prescription. Several of these devices are effective for abortive and preventive treatment of migraine. Invasive techniques such as cranial nerve stimulation with implanted stimulator devices or spinal cord stimulation may be used for more aggressive management in patients refractory to other treatments. Overall, neuromodulation techniques can be particularly beneficial for medically complex or refractory patients, those that prefer nonmedication options, and those that have experienced adverse effects from medications.


Assuntos
Terapia por Estimulação Elétrica , Transtornos de Enxaqueca , Estimulação Elétrica Nervosa Transcutânea , Humanos , Transtornos de Enxaqueca/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Sistema Nervoso Periférico , Estimulação Magnética Transcraniana/métodos
7.
Am J Occup Ther ; 78(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305818

RESUMO

IMPORTANCE: Handedness and motor asymmetry are important features of occupational performance. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. OBJECTIVE: To review the basic neural mechanisms behind handedness and their implications for central and peripheral nervous system injury. DATA SOURCES: Relevant published literature obtained via MEDLINE. FINDINGS: Handedness, along with performance asymmetries observed between the dominant and nondominant hands, may be due to hemispheric specializations for motor control. These specializations contribute to predictable motor control deficits that are dependent on which hemisphere or limb has been affected. Clinical practice recommendations for occupational therapists and other rehabilitation specialists are presented. CONCLUSIONS AND RELEVANCE: It is vital that occupational therapists and other rehabilitation specialists consider handedness and hemispheric lateralization during evaluation and treatment. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. Plain-Language Summary: The goal of this narrative review is to increase clinicians' understanding of the basic neural mechanisms related to handedness (the tendency to select one hand over the other for specific tasks) and their implications for central and peripheral nervous system injury and rehabilitation. An enhanced understanding of these mechanisms may allow clinicians to better tailor neurorehabilitation interventions to address motor deficits and promote functional independence.


Assuntos
Lateralidade Funcional , Mãos , Humanos , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Sistema Nervoso Periférico , Idioma
8.
Clin Neurophysiol ; 160: 75-94, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412746

RESUMO

The blink reflex (BR) is integrated at the brainstem; however, it is modulated by inputs from various structures such as the striatum, globus pallidus, substantia nigra, and nucleus raphe magnus but also from afferent input from the peripheral nervous system. Therefore, it provides information about the pathophysiology of numerous peripheral and central nervous system disorders. The BR is a valuable tool for studying the integrity of the trigemino-facial system, the relevant brainstem nuclei, and circuits. At the same time, some neurophysiological techniques applying the BR may indicate abnormalities involving structures rostral to the brainstem that modulate or control the BR circuits. This is a state-of-the-art review of the clinical application of BR modulation; physiology is reviewed in part 1. In this review, we aim to present the role of the BR and techniques related to its modulation in understanding pathophysiological mechanisms of motor control and pain disorders, in which these techniques are diagnostically helpful. Furthermore, some BR techniques may have a predictive value or serve as a basis for follow-up evaluation. BR testing may benefit in the diagnosis of hemifacial spasm, dystonia, functional movement disorders, migraine, orofacial pain, and psychiatric disorders. Although the abnormalities in the integrity of the BR pathway itself may provide information about trigeminal or facial nerve disorders, alterations in BR excitability are found in several disease conditions. BR excitability studies are suitable for understanding the common pathophysiological mechanisms behind various clinical entities, elucidating alterations in top-down inhibitory systems, and allowing for follow-up and quantitation of many neurological syndromes.


Assuntos
Distúrbios Distônicos , Espasmo Hemifacial , Humanos , Piscadela , Sistema Nervoso Periférico , Dor Facial , Reflexo/fisiologia
9.
Acad Emerg Med ; 31(4): 386-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419365

RESUMO

INTRODUCTION: Acute presentations and emergencies in neuromuscular disorders (NMDs) often challenge clinical acumen. The objective of this review is to refine the reader's approach to history taking, clinical localization and early diagnosis, as well as emergency management of neuromuscular emergencies. METHODS: An extensive literature search was performed to identify relevant studies. We prioritized meta-analysis, systematic reviews, and position statements where possible to inform any recommendations. SUMMARY: The spectrum of clinical presentations and etiologies ranges from neurotoxic envenomation or infection to autoimmune disease such as Guillain-Barré Syndrome (GBS) and myasthenia gravis (MG). Delayed diagnosis is not uncommon when presentations occur "de novo," respiratory failure is dominant or isolated, or in the case of atypical scenarios such as GBS variants, severe autonomic dysfunction, or rhabdomyolysis. Diseases of the central nervous system, systemic and musculoskeletal disorders can mimic presentations in neuromuscular disorders. CONCLUSIONS: Fortunately, early diagnosis and management can improve prognosis. This article provides a comprehensive review of acute presentations in neuromuscular disorders relevant for the emergency physician.


Assuntos
Síndrome de Guillain-Barré , Miastenia Gravis , Doenças Neuromusculares , Humanos , Emergências , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/terapia , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/terapia , Sistema Nervoso Periférico , Serviço Hospitalar de Emergência
10.
Mol Cells ; 47(2): 100030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364960

RESUMO

Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Humanos , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Termogênese , Sistema Nervoso Periférico/metabolismo
11.
PLoS One ; 19(2): e0296872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329975

RESUMO

Many soft-bodied animals have extensive peripheral nervous systems (PNS) with significant sensory roles. One such, the sea slug Pleurobranchaea californica, uses PNS computations in its chemotactile oral veil (OV) in prey tracking, averaging olfactory stimuli across the OV to target likely source direction, or "stimulus place". This suggests a peripheral subepithelial network (SeN) interconnecting sensory sites to compute the directional average. We pursued anatomy and connectivity of previously described ciliated putative sensory cells on OV papillae. Scanning electron microscopy (SEM) confirmed paddle-shaped cilia in clusters. Anti-tubulin and phalloidin staining showed connections to branching nervelets and muscle fibers for contraction and expansion of papillae. Ciliary cell processes could not be traced into nerves, consistent with sensory transmission to CNS via secondary afferents. Anti-tyrosine hydroxylase-stained ciliated cells in clusters and revealed an at least partially dopaminergic subepithelial network interconnecting clusters near and distant, connections consistent with PNS averaging of multiple stimulated loci. Other, unidentified, SeN neurotransmitters are likely. Confirming chemotactile functions, perfusible suction electrodes recorded ciliary spiking excited by both mechanical and appetitive chemical stimuli. Stimuli induced sensory nerve spiking like that encoding stimulus place. Sensory nerve spikes and cilia cluster spikes were not identifiable as generated by the same neurons. Ciliary clusters likely drive the sensory nerve spikes via SeN, mediating appetitive and stimulus place codes to CNS. These observations may facilitate future analyses of the PNS in odor discrimination and memory, and also suggest such SeNs as potential evolutionary precursors of CNS place-coding circuitry in the segmented, skeletonized protostomes and deuterostomes.


Assuntos
Pleurobranchaea , Animais , Sistema Nervoso Periférico , Neurônios , Aplysia , Comportamento Predatório
12.
Acta Neuropathol Commun ; 12(1): 24, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331815

RESUMO

Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas de Ligação ao GTP , Mamíferos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann
13.
Curr Osteoporos Rep ; 22(1): 217-221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217755

RESUMO

PURPOSE OF REVIEW: Three review articles have been written that discuss the roles of the central and peripheral nervous systems in fracture healing. While content among the articles is overlapping, there is a key difference between them: the use of artificial intelligence (AI). In one paper, the first draft was written solely by humans. In the second paper, the first draft was written solely by AI using ChatGPT 4.0 (AI-only or AIO). In the third paper, the first draft was written using ChatGPT 4.0 but the literature references were supplied from the human-written paper (AI-assisted or AIA). This project was done to evaluate the capacity of AI to conduct scientific writing. Importantly, all manuscripts were fact checked and extensively edited by all co-authors rendering the final manuscript drafts significantly different from the first drafts. RECENT FINDINGS: Unsurprisingly, the use of AI decreased the time spent to write a review. The two AI-written reviews took less time to write than the human-written paper; however, the changes and editing required in all three manuscripts were extensive. The human-written paper was edited the most. On the other hand, the AI-only paper was the most inaccurate with inappropriate reference usage and the AI-assisted paper had the greatest incidence of plagiarism. These findings show that each style of writing presents its own unique set of challenges and advantages. While AI can theoretically write scientific reviews, from these findings, the extent of editing done subsequently, the inaccuracy of the claims it makes, and the plagiarism by AI are all factors to be considered and a primary reason why it may be several years into the future before AI can present itself as a viable alternative for traditional scientific writing.


Assuntos
Inteligência Artificial , Consolidação da Fratura , Humanos , Sistema Nervoso Periférico , Homeostase , Redação
14.
Curr Osteoporos Rep ; 22(1): 193-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236511

RESUMO

PURPOSE OF REVIEW: The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS: Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.


Assuntos
Inteligência Artificial , Fraturas Ósseas , Humanos , Osteogênese , Consolidação da Fratura/fisiologia , Sistema Nervoso Periférico , Inflamação
15.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256040

RESUMO

Neurodegenerative diseases are a heterogeneous group of age-related disorders characterised by the progressive degeneration or death of neurons in the central or peripheral nervous system [...].


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Neurônios , Sistema Nervoso Periférico
16.
Sci Rep ; 14(1): 570, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177237

RESUMO

Familial dysautonomia (FD) is a rare recessive neurodevelopmental disease caused by a splice mutation in the Elongator acetyltransferase complex subunit 1 (ELP1) gene. This mutation results in a tissue-specific reduction of ELP1 protein, with the lowest levels in the central and peripheral nervous systems (CNS and PNS, respectively). FD patients exhibit complex neurological phenotypes due to the loss of sensory and autonomic neurons. Disease symptoms include decreased pain and temperature perception, impaired or absent myotatic reflexes, proprioceptive ataxia, and progressive retinal degeneration. While the involvement of the PNS in FD pathogenesis has been clearly recognized, the underlying mechanisms responsible for the preferential neuronal loss remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying FD by conducting a comprehensive transcriptome analysis of neuronal tissues from the phenotypic mouse model TgFD9; Elp1Δ20/flox. This mouse recapitulates the same tissue-specific ELP1 mis-splicing observed in patients while modeling many of the disease manifestations. Comparison of FD and control transcriptomes from dorsal root ganglion (DRG), trigeminal ganglion (TG), medulla (MED), cortex, and spinal cord (SC) showed significantly more differentially expressed genes (DEGs) in the PNS than the CNS. We then identified genes that were tightly co-expressed and functionally dependent on the level of full-length ELP1 transcript. These genes, defined as ELP1 dose-responsive genes, were combined with the DEGs to generate tissue-specific dysregulated FD signature genes and networks. Within the PNS networks, we observed direct connections between Elp1 and genes involved in tRNA synthesis and genes related to amine metabolism and synaptic signaling. Importantly, transcriptomic dysregulation in PNS tissues exhibited enrichment for neuronal subtype markers associated with peptidergic nociceptors and myelinated sensory neurons, which are known to be affected in FD. In summary, this study has identified critical tissue-specific gene networks underlying the etiology of FD and provides new insights into the molecular basis of the disease.


Assuntos
Disautonomia Familiar , Humanos , Camundongos , Animais , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Disautonomia Familiar/patologia , Proteínas de Transporte/metabolismo , Sistema Nervoso Periférico/metabolismo , Células Receptoras Sensoriais/metabolismo , Perfilação da Expressão Gênica , Expressão Gênica
17.
Cell Res ; 34(2): 124-139, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168640

RESUMO

Achieving uniform optical resolution for a large tissue sample is a major challenge for deep imaging. For conventional tissue clearing methods, loss of resolution and quality in deep regions is inevitable due to limited transparency. Here we describe the Transparent Embedding Solvent System (TESOS) method, which combines tissue clearing, transparent embedding, sectioning and block-face imaging. We used TESOS to acquire volumetric images of uniform resolution for an adult mouse whole-body sample. The TESOS method is highly versatile and can be combined with different microscopy systems to achieve uniformly high resolution. With a light sheet microscope, we imaged the whole body of an adult mouse, including skin, at a uniform 0.8 × 0.8 × 3.5 µm3 voxel resolution within 120 h. With a confocal microscope and a 40×/1.3 numerical aperture objective, we achieved a uniform sub-micron resolution in the whole sample to reveal a complete projection of individual nerve axons within the central or peripheral nervous system. Furthermore, TESOS allowed the first mesoscale connectome mapping of individual sensory neuron axons spanning 5 cm from adult mouse digits to the spinal cord at a uniform sub-micron resolution.


Assuntos
Axônios , Imageamento Tridimensional , Camundongos , Animais , Solventes , Imageamento Tridimensional/métodos , Medula Espinal , Sistema Nervoso Periférico
18.
Neuron ; 112(2): 175-177, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38237553

RESUMO

In this issue of Neuron, Bhat et al.1 unveil the temporary reawakening of an embryonic guidance program, which facilitates the alignment of blood neovessels, creating a supportive "bridge" microenvironment for axon regrowth and tissue regeneration after peripheral nervous system (PNS) injury.


Assuntos
Axônios , Regeneração Nervosa , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Neurônios , Sistema Nervoso Periférico/fisiologia
19.
Curr Neuropharmacol ; 22(1): 65-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37534790

RESUMO

The percutaneous technique of electrode insertion in the vicinity of the greater occipital nerves to treat occipital neuralgia was first described in the 1990s by Weiner and Reed. This subsequently stimulated awareness of peripheral nerve stimulation (PNS). The more recent advent emergence of a minimally invasive percutaneous approach by way of using ultrasound has further increased the interest in PNS as a viable alternative to more invasive techniques. PNS has become more popular recently and is increasingly used to treat various pain conditions. Its foundation is fundamentally based on the gate control theory, although the precise mechanism underlying its analgesic effect is still indefinite. Studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and the involvement of the cortical and subcortical areas. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the modulation of PNS mechanisms can help guide stimulation approaches and parameters to optimize the use of PNS. his chapter aims to review the background and mechanisms of PNS modulation. PNS is becoming one of the most diverse therapies in neuromodulation due to rapid evolution and expansion. It is an attractive option for clinicians due to the simplicity and versatility of procedures that can be combined with other neuromodulation treatments or used alone. It has a distinct role in the modulation of functional conditions.


Assuntos
Terapia por Estimulação Elétrica , Neuralgia , Humanos , Terapia por Estimulação Elétrica/métodos , Nervos Periféricos/fisiologia , Nervos Periféricos/cirurgia , Sistema Nervoso Periférico , Neuralgia/terapia , Analgésicos
20.
Br J Anaesth ; 132(2): 285-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114354

RESUMO

The central and peripheral nervous systems are the primary target organs during anaesthesia. At the time of the inception of the British Journal of Anaesthesia, monitoring of the central nervous system comprised clinical observation, which provided only limited information. During the 100 yr since then, and particularly in the past few decades, significant progress has been made, providing anaesthetists with tools to obtain real-time assessments of cerebral neurophysiology during surgical procedures. In this narrative review article, we discuss the rationale and uses of electroencephalography, evoked potentials, near-infrared spectroscopy, and transcranial Doppler ultrasonography for intraoperative monitoring of the central and peripheral nervous systems.


Assuntos
Anestesia , Monitorização Intraoperatória , Humanos , Monitorização Intraoperatória/métodos , Potenciais Evocados , Eletroencefalografia , Sistema Nervoso Periférico , Ultrassonografia Doppler Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...